skip to main content


Search for: All records

Creators/Authors contains: "Lakshmanan, Sushil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The macro-porous ceramics has promising durability and thermal insulation performance. As porous ceramics find more and more applications across many industries, a cost-effective and scalable additive manufacturing technique for fabricating macro-porous ceramics is highly desirable. Herein, we reported a facile additive manufacturing approach to fabricate porous ceramics and control the printed porosity. Several printable ceramic inks were prepared, and the foaming agent was added to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. A set of experimental studies were performed to optimize the printing quality. The results revealed the optimal process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enables the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics possessed enhanced durability with the addition of fiber. With a high-fidelity three-dimensional (3D) printing process and the precise controllability of the porosity, we showed that the printed samples exhibited a remarkably low thermal conductivity and durable mechanical strength. 
    more » « less
  2. Abstract

    The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.

     
    more » « less